Грп важнее санкций. Фрекинг или гидроразрыв пласта: технология, история, оборудование. Новые технологии ГРП

Среди них – новые жидкости для разрыва пластов, ПАВы, гидрофобные агенты и добавки.

Компания «ТаграС-РемСервис» представила новые технологические решения для гидроразрыва пласта (ГРП) в сложных геолого-технических условиях.

В компании начали применять новую низковязкую жидкость разрыва пласта с хорошими песконесущими свойствами. Использование данного продукта позволяет:

1. Равномерно размещать расклинивающий агент (проппант) по высоте и длине продуктивного пласта.

2. Контролировать рост трещины в высоту (проведение ГРП на пластах со слабыми барьерами до воды)

3. Снизить повреждение проппантной пачки после полного разрушения геля (сохранить проводимость трещины).

В «ТаграС-РемСервисе» ведутся работы по лабораторному тестированию нового закрепляющего материала – модифицированного песка. Этот продукт помогает сократить движение воды по трещине ГРП, в частности, при операции гидроразрыва пласта на высокообводненном фонде скважин. Песок обладает гидрофобными свойствами, равномерно распределяется по всей высоте трещины и дает возможность снизить вязкость жидкости разрыва.

Новая технология комбинированного кислотно-проппантного ГРП на основе загеленной кислоты поверхностно-активными веществами (ПАВ), сокращает процесс освоения и выхода скважины на рабочий режим, а также снижает риски получения вынужденной остановки процесса. Применение новых химических реагентов исключает попадание полимера в пласт. При этом сокращается количество закачиваемой жидкости в коллектор благодаря тому, что исключается цикл закачки водного полисахаридного геля с проппантом.

«ТаграС-РемСервис» также осваивает технологию гидропескоструйной перфорации с дальнейшим проведением ГРП. Основным преимуществом нового технического решения – это возможность адресного воздействия на пласт без отсечения других интервалов перфорации, т.е. предварительного создания трещины при проведении гидропескоструйной перфорации. Операции можно выполнять и на скважинах с низким качеством цементного камня за колонной. Данная технология позволяет проводить многозонный ГРП в скважинах с горизонтальным окончанием.

С целью регулирования вязкости жидкости ГРП "на лету» в зависимости от фракции и концентрации проппанта, предлагается применять новый реагент антиседиментационную добавку, которая позволяет:

1. Равномерно распределить проппант по вертикали трещины.

2. Увеличить песконесущую способность жидкости гидроразрыва пласта.

3. Снизить загрузку гелеобразователя.

Эти наработки «ТаграС-РемСервис» недавно представил на выставке «Нефть. Газ. Нефтехимия» в рамках Татарстанского нефтегазохимического форума. Со стендом компании ознакомился президент Татарстана Рустам Минниханов.

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Оборудование для гидроразрыва пласта

Оборудование, необходимое для гидроразрыва пласта, производит целый ряд предприятий, как зарубежных, так и отечественных. Одно из них - компания «ТРАСТ-ИНЖИНИРИНГ» , которая представляет широкий выбор оборудования для ГРП в стандартном исполнении, так и в виде модификации, выполняемой по желанию заказчика.

В качестве конкурентных преимуществ продукции ООО «ТРАСТ-ИНЖИНИРИНГ» необходимо отметить высокую долю локализации производства; применение самых современных технологий проектирования и производства; использование узлов и комплектующих от мировых лидеров отрасли. Важно отметить и присущую специалистам компании высокую культуру проектирования, производства, гарантийного, постгарантийного и сервисного обслуживания. Оборудование для ГРП производства ООО «ТРАСТ-ИНЖИНИРИНГ» легче приобрести благодаря наличию представительств в Москве (Российская Федерация), Ташкенте (Республика Узбекистан), Атырау (Республика Казахстан), а также в Панчево (Сербия).

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.

В последнее время в нефтяном производстве все чаще стали использовать гидроразрыв пластов (ГРП). ГРП является одним из эффективнейших методов воздействия на призабойную зону скважин. Самый первый опыт гидроразрыва пласта в Когалымском регионе был проведен в 1989 году на Повховском месторождении. С этого момента прошло много времени, были внедрены разные технологии гидроразрыва , и этот процесс стал неотъемлемой частью работы всех месторождений предприятия. Если раньше основной задачей ГРП было восстановление естественной продуктивности пласта, ухудшенной в процессе бурения и эксплуатации скважин, то сейчас в приоритете - увеличение нефтеотдачи пластов на месторождениях, находящихся на поздней стадии разработки как за счет вовлечения в разработку слабодренируемых зон и интервалов в объектах с высокой степенью выработки запасов, так и вовлечение в разработку низкопроницаемых, сильнорасчлененных объектов. Два наиболее важных направления развития в нефтедобыче за последние 15 лет - это как раз гидроразрыв пласта и бурение горизонтальных скважин. У этой комбинации очень высокий потенциал. Горизонтальные скважины можно бурить либо перпендикулярно, либо вдоль азимута развития трещины. Практически ни одна технология в нефтегазовой промышленности не дает столь высокой экономической отдачи. В этом убедились сотрудники Тевлинско-Русскинского месторождения , испытав на скважине 1744Г метод поинтервального ГРП. Об успешном опыте нам поведал ведущий инженер отдела повышения нефтеотдачи пластов Юрий Миклин.

В эпоху высоких цен на энергоносители добывающие компании стремятся извлечь максимум из своих активов, добывая столько углеводородов, сколько оправдано экономически, - рассказывает Юрий, - с этой целью часто вовлекаются в разработку протяженные интервалы пласта посредством горизонтальных скважин. Результаты традиционного гидроразрыва пласта в таких скважинах могут оказаться неудовлетворительными по экономическим и технологическим причинам. Метод поинтервального или, как еще говорят, многоинтервального ГРП , способен обеспечить более эффективную выработку запасов нефти за счет увеличения площади контакта трещины с пластом и создания высокопроводящих путей для движения нефти. Ухудшенные коллекторские свойства пластов вынуждают добывающие компании искать все новые и новые пути экономически более выгодных путей строительства скважины для дальнейшей стимуляции интересующих пластов с использованием последних достижений науки и техники. Осознавая это, компании стремятся сократить время, а соответственно, и расходы на дополнительные спускоподъемные операции и работу бригад капитального ремонта скважин с помощью специального оборудования, которое становится составной частью скважины.

Одним из путей выхода является заканчивание скважины с горизонтальным окончанием хвостовиком с циркуляционными клапанами на компоновке, которые служат для закачивания смеси жидкости с проппанитом. Эта компоновка включает в себя разбухающие пакеры, предназначенные для закрепления хвостовика и придания ему устойчивости в открытом необсаженном стволе.

Процесс гидроразрыва пластов заключается в создании искусственных и расширении имеющихся трещин в породах призабойной зоны при воздействии повышенных давлений жидкости, нагнетаемой в скважину. Вся эта система трещин связывает скважину с удаленными от забоя продуктивными частями пласта. Для предотвращения смыкания трещин в них вводят крупнозернистый песок, добавляемый в жидкость, нагнетаемую в скважину. Длина трещин может достигать нескольких десятков метров.

Здесь надо учитывать, что расстояние между местами установки циркуляционных клапанов и соответственно местами инициирования трещин в горизонтальном стволе будет влиять на производительность каждого участка, - отмечает Юрий, - то есть требуется выбрать оптимальное расстояние между трещинами, исходя из геометрии проектируемых трещин. Мы должны максимально обезопасить себя от пересечения трещин в продуктивном пласте, что может явиться причиной осложнений при проведении ГРП. В идеальном случае максимальный дебит возможен при расстоянии между трещинами, равным радиусу дренирования. Это условие невыполнимо, учитывая конструкцию скважины 1744Г, поэтому расположение трещин необходимо было выбирать с максимально возможным удалением друг от друга.

Учитывая наклонное залегание пластов, горизонтальные скважины наилучшим образом повышают площадь контакта с продуктивным пластом. Проведение ГРП по технологии «Zone Select» проходит следующим образом: сначала производится гидроразрыв самого дальнего интервала через компоновку, в которой уже открыт циркуляционный клапан. После чего с поверхности в колонну НКТ (насосно-компрессорных труб) вместе с продавочной жидкостью запускается шар, который, достигая забоя скважины, сначала открывает второй циркуляционный клапан для обработки следующего участка, а затем садится в специальное седло, отсекая обработанный интервал. При двух интервалах обработки используется один шар. Пропорционально увеличению количества интервалов обработки увеличивается и количество шаров. Причем каждый следующий шар должен быть большего диаметра, чем предыдущий. Шары изготавливаются из алюминия, и это важно. После стимуляции необходимого количества интервалов и закачки расчетного количества смеси жидкости и песка флот ГРП уезжает со скважины. На скважину становится флот ГНКТ (гибкие насосно-компресорные трубы), который осуществляет промывку, фрезерование шаров и освоение скважины с определением профиля притока и добывных возможностей скважины. Освоение производится азотом - это наиболее перспективное направление по снижению давления на забой скважины. В ТПП «Когалымнефтегаз» по данной технологии была проведена обработка двух интервалов скважины 1744Г Тевлинско-Русскинского месторождения. По сравнению с соседними горизонтальными и наклонно-направленными скважинами после проведения на них ГРП по стандартной технологии, на данной скважине были получены более высокие технологические показатели. Первоначальный дебит нефти на скважине 1744Г составил порядка 140 тонн в сутки.

Напоследок хочется отметить, что именно масштабное применение ГРП позволяет остановить падение добычи нефти на месторождениях ТПП "Когалымнефтегаз" и увеличивает выработку запасов из средне- и низкопродуктивных коллекторов. Преимуществами проведения поинтервального ГРП в горизонтальных скважинах по технологии «Zone Select» является не только увеличение эффективной площади контакта пласта со скважиной, дренирующей пласт, но и преодоление повреждения призабойной зоны ствола скважины после бурения, а также приобщение в разработку слабодренируемых участков с низкими фильтрационно-емкостными свойствами. Это свидетельствует о том, что горизонтальные скважины с применением поинтервального ГРП более эффективны и экономически выгодны.

Россия ожидает усиления санкционного давления. Великобритания и США активно ищут новые поводы для дискриминации российского бизнеса. Однако результаты последней волны санкционной политики, начавшейся в 2014 году, далеко не однозначны. Даже независимые исследования показывают, что российский топливно-энергетический комплекс не сильно пострадал от ограничений, более того, именно они подтолкнули развитие промышленности в России. По мнению отраслевых экспертов, возможное усиление антироссийских санкций также не станет критичным для ТЭК России, но только в том случае, если правительство и энергокомпании вовремя мобилизуют силы для создания отечественной машиностроительной отрасли, выпускающей оборудование для добычи трудноизвлекаемых запасов нефти (ТРИЗ).

Россия должна научиться добывать ТРИЗ

Накануне Энергетический центр бизнес-школы СКОЛКОВО представил результаты своего исследования «Перспективы российской нефтедобычи: жизнь под санкциями », где было проанализировано влияние санкций, введенных в США и ЕС, на российский нефтяной сектор, в частности на ввод в России новых традиционных месторождений, развитие шельфовых проектов, добычу баженовской нефти. Авторы исследования также сделали сценарный прогноз российской нефтедобычи до 2030 года.

В документе отмечается, что на горизонте до 2020 года, несмотря на все ограничения, у России есть потенциал для дальнейшего увеличения объемов производства за счет уже подготовленных месторождений. Этот краткосрочный потенциал роста, однако, может быть ограничен договоренностями с ОПЕК. В среднесрочном периоде до 2025 года, даже в случае жесткого ограничения доступа к технологиям и низкой цене на нефть, объемы добычи пострадают не катастрофически. При этом главной причиной спада добычи в этот период может стать не столько отсутствие доступа к западным технологиям для реализации новых проектов, сколько отсутствие технологических возможностей по интенсификации добычи на действующих месторождениях.

Данное исследование показало, что наиболее критическая технология для поддержания объемов российской нефтедобычи – это ГРП (гидроразрыв пласта), поскольку она способна обеспечить поддержание добычи на действующих месторождениях.

Применение МГРП (многостадийного гидравлического разрыва пласта) обещает рост добычи на перспективных нетрадиционных месторождениях.

Авторы исследования подчеркивают, что в сложившихся условиях именно разработка собственных технологий ГРП и МГРП, выпуск флотов ГРП и МГРП внутри страны и подготовка персонала должны стать технологическим приоритетом для компаний отрасли и регуляторов. Однако пока работа в этом направлении ведется явно недостаточными темпами. Как отметила в своем докладе эксперт Энергетического центра бизнес-школы СКОЛКОВО Екатерина Грушевенко, в период с 2015 по август 2017 года не было произведено ни одного флота ГРП. Роторно-управляемые системы, согласно данным сайта НТЦ ПАО «Газпром нефть», на конец 2016 года находились в стадии испытания. Эксперт подчеркнула, что уже сейчас две трети нефтяных запасов приходится на ТРИЗ.

До 2020 года сокращения добычи не ожидается

Директор Энергетического центра бизнес-школы СКОЛКОВО Татьяна Митрова в своем выступлении на презентации данного исследования отметила, что первые санкции в отношении России и российских энергетических компаний были введены в 2014 году, но никаких специальных исследований об их влиянии на нефтяную отрасль опубликовано не было.

«Мы не знали, какой результат мы получим. Первая гипотеза предполагала, что последствия будут очень тяжелыми», – рассказала Митрова. Однако результаты показали несколько иную картину влияния санкций.

«В настоящее время никаких серьезных последствий санкций в операционной деятельности компаний не ощущается. Действительно, добыча в последние годы росла, невзирая на низкие цены и санкции. Нефтяная отрасль рапортовала об успехах. Но позитивная текущая ситуация не должна вводить в заблуждение, анализ самого комплекса санкций говорит об их очень широкой трактовке, в этом и заключается основная угроза санкционного давления», – указала эксперт.

По ее словам, до 2020 года, согласно результатам моделирования, сокращения добычи не предвидится, поскольку основные проекты уже профинансированы.

«Начиная с 2020 года негативные тенденции будут проявляться все более заметно и могут привести к снижению добычи нефти в России на 5% к 2025 году и на 10% к 2030 году от текущих уровней добычи. Снижение добычи в таких размерах, конечно, не катастрофично для российской экономики, но тем не менее достаточно чувствительно», – заявила Митрова.

Она подчеркнула, что санкции – долгая история и для того чтобы российская нефтяная отрасль к ним адаптировалась, необходимы дополнительные усилия государства и компаний по разработке собственных технологий и производства необходимого оборудования.

«Есть огромная часть нефтедобычи, которая напрямую зависит от технологии ГРП. Именно наличие данного оборудования оказывает наибольшее влияние на объемы нефтедобычи в стране. Но разработка и внедрение производства данной технологии в большей степени задача российского правительства и промышленности», – пояснила директор Энергетического центра.

Требуется новая отрасль

Руководитель направления «Газ и Арктика» бизнес-школы СКОЛКОВО Роман Самсонов в своем выступлении отметил, что, по его личным наблюдениям, в России только на фоне санкций можно наблюдать прогресс в разработке и производстве собственного высокотехнологического оборудования.

«Ситуация с производством высокотехнологичного оборудования сложная, но ей можно научиться управлять. Фактически речь идет о создании целой многофункциональной подотрасли нефтегазомашиностроения», – отметил Самсонов.

По мнению участников исследования «Перспективы российской нефтедобычи: жизнь под санкциями», столь масштабная задача по созданию новой подотрасли тяжелого машиностроения в советские времена решалась только благодаря государственным директивам. В условиях современной рыночной экономики, в которой сейчас развивается РФ, механизмы для реализации этой задачи еще не отработаны.

Впрочем, это только в России. Если посмотреть на опыт западных стран, которые с успехом преодолевают все трудности для добычи ТРИЗ, становится ясно, что такой способ давно найден. Наиболее отчетливо это видно на примере сланцевой индустрии США, которая активно кредитовалась даже в период низких цен, что помогло ей выжить. Очевидно, что столь терпимое отношение банков к этому сектору нефтедобычи не могло обойтись без госучастия. Теперь же благодарные сланцевики помогают властям США сдерживать ОПЕК и других производителей нефти, активно влияя на мировой нефтегазовый рынок.

Екатерина Дейнего

Виды ГРП

В настоящее время в мировой нефтедобывающей практике используются три основных вида гидравлического разрыва пласта: обычный гидроразрыв пласта (ГРП), глубокопроникающий (ГГРП) и массированный (МГРП). Каждый из этих видов имеет свою область применения.

ГРП используется как средство увеличения проницаемости призабойной зоны пласта. Применяется, как правило, в отдельных скважинах с загрязненной призабойной зоной с целью восстановления их естественной продуктивности, характеризуется использованием незначительного количества закрепляющего материала (5-10 тонн).

ГГРП является одним из наиболее эффективных методов, позволяющих увеличить продуктивность скважин, дренирующих низкопроницаемый пласт (с проницаемостью менее 0,05мкм 2). Характеризуется этот процесс использованием больших количеств закрепляющего материала - 10-50тонн и жидкостей разрыва - 150-200м 3. В этом случае создаются трещины или система трещин значительной протяженности (50-100 и более метров), охватывающие не только призабойную зону, но и значительную часть пласта. В этом основное отличие ГГРП от обычного ГРП. Область применения ГГРП - низкопроницаемые залежи или отдельные её участки с целью, в частности, достигнуть рентабельности разработки таких месторождений. Технология ГГРП предназначается для воздействия на неистощенные (невыработанные) нефтяные залежи, где продуктивные пласты представлены терригенными (песчаными) коллекторами.

МГРП - массированный гидроразрыв пласта, который на практике применяется в низкопроницаемых коллекторах газовых месторождениях. Основной особенностью этого процесса является создание искусственных трещин очень большой протяженности. Для этих целей используются большие количества закрепляющего материала.

Новые технологии ГРП

Существенное расширение области применения гидравлического разрыва и рост числа операций в течение последнего десятилетия связаны с интенсивным развитием технологий проведения обработок. К новым эффективным методам следует отнести технологию осаждения проппанта на конце трещины или концевое экранирование трещины (TSO), которая позволяет целенаправленно увеличить ее ширину, остановив рост в длину, и тем самым существенно увеличить проводимость (произведение проницаемости и ширины). Для снижения риска попадания трещины в водо- или газоностные горизонты, а также для интенсификации выработки запасов низкопроницаемых слоев применяется технология селективного гидроразрыва. Постоянно создаются новые материалы для ГРП. С целью предотвращения выноса проппанта из трещины создана технология PropNET, предусматривающая закачку в пласт одновременно с проппантом специального гибкого стекловолокна, которое, заполняя промежутки между частицами проппанта, обеспечивает максимальную устойчивость проппантной пачки. Для снижения степени остаточного загрязнения трещины разработаны низко полимерные жидкости разрыва LowGuar и система добавок к деструктору CleanFLOW. Применяется незагрязняющая пласт жидкость ClearFrac, которая не требует деструктора.

Совершенствуется информационная база проведения ГРП. Основными источниками информации являются геологические, геофизические и петрофизические исследования, лабораторный анализ керна, промысловый эксперимент, состоящий в проведении микро- и минигидроразрывов перед основным ГРП. Таким образом определяется распределение напряжений в пласте, определяется эффективное давление разрыва и давление смыкания трещины, выбирается модель развития трещины, рассчитывается её геометрические размеры. Специальные приборы позволяют определить высоту и азимут трещины. С использованием специальных программ с учетом целей ГРП осуществляется «дизайн» трещины.

Применение новых технологий позволяет подобрать жидкость разрыва и проппант, максимально соответствующие конкретным условиям, и проконтролировать раскрытие и распространение трещины, транспорт проппанта во взвешенном состоянии вдоль всей трещины, успешное завершение операции. В последние годы разрабатывается технология комплексного подхода к проектированию ГРП как элемента системы разработки. Такой подход основан на учете многих факторов, в том числе проводимости и энергетического потенциала пласта, системы размещения добывающих и нагнетательных скважин, механики трещины, характеристик жидкости разрыва и проппанта, технологических и экономических ограничений.